Highlights of Vitreoretina

Register      Login

VOLUME 14 , ISSUE 4 ( August, 2021 ) > List of Articles

Espectro Lumínico y Oftalmología: Controversias con el Filtro Azul y Otras Patologías (Artículo cortesía de FacoElche)

Dr. Sidi Mohamed Hamida Abdelkader, Dr. Carlos Rocha de Lossada

Keywords : Filtros azules, luz ultravioleta, lentes intraoculares, gafas, daño retiniano, daño ocular

Citation Information : Abdelkader DS, de Lossada DC. Espectro Lumínico y Oftalmología: Controversias con el Filtro Azul y Otras Patologías (Artículo cortesía de FacoElche). 2021; 14 (4):11-23.

DOI: 10.5005/hov-10102-14402

Published Online: 10-12-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

La luz ambiental que llega a la retina está compuesta por infrarrojos (700-1200 nm), espectro visible (400-700 nm) y en personas jóvenes, luz ultravioleta-B (280-315 nm). Las porciones más ofensivas del espectro electromagnético son las radiaciones UV (200-400 nm) y la porción de luz azul del espectro visible (400-500 nm); y esta última porción del espectro comprende, la luz violeta (400-440 nm) y la luz azul propiamente dicha (440-500 nm). El objetivo de los filtros de luz azul es mitigar el riesgo de toxicidad retiniana, mejorar la calidad del sueño y aliviar la fatiga visual, atenuando la luz visible de longitud de onda corta, sobre todo en el rango 400-500 nm (pico alrededor de los 440 nm), que son las que se asocian con un daño celular más intenso, inicialmente a nivel del epitelio pigmentario de la retina. Sin embargo, la Comisión Internacional de Protección contra las Radiaciones No Ionizantes (ICNIRP, por sus siglas en inglés), informa que el riesgo de daño retiniano secundario a la luz emitida por dispositivos digitales y fuentes de luz doméstica es mínimo. Actualmente los estudios han demostrado una falta de evidencia de alta calidad en recomendar los filtros azules tanto en gafas como en lentes intraoculares, para mejorar el rendimiento visual, calidad del sueño, aliviar la fatiga ocular o conservar la salud macular. Además, el bloqueo de la luz azul podría inducir alteraciones de la percepción del color, disminución de la sensibilidad escotópica y alteraciones de la sincronización del sistema circadiano.


PDF Share
  1. Bullock JD. The blindness of Saint Paul. Ophthalmology. 1978;85:1044e53.
  2. Galilei G: Istoria e Dimostrazioni intorno alle Macchie Solari. Giacomo Mascardi, Roma, 1613.
  3. Rosen E. Solar retinitis. Br J Ophthalmol. 1948;32:23e35.
  4. Tower P. Solar retinitis due to exposure during eclipse. Ann West Med Surg. 1948;2:217e21.
  5. Begaj T, Schaal S. Sunlight and ultraviolet radiationdpertinent retinal implications and current management. Surv Ophthalmol. 2018; 63(2):174-192.
  6. Rothkoff L, Kushelevsky A, Blumenthal M. Solar retinopathy: visual prognosis in 20 cases. Isr J Med Sci. 1978;14:238e43.
  7. Lawrenson JG, Hull CC, Downie LE. The effect of blue-light blocking spectacle lenses on visual performance, macular health and the sleep-wake cycle: a systematic review of the literature. Ophthalmic Physiol Opt. 2017; 37(6):644-654.
  8. Noell WK, Walker VS, Kang BS & Berman S. Retinal damage by light in rats. Invest Ophthalmol 1966; 5: 450–473.
  9. Ham WT, Mueller HA, Ruffolo JJ Jr, Guerry D & Guerry RK. Action spectrum for retinal injury from near-ultraviolet radiation in the aphakic monkey. Am J Ophthalmol 1982; 93: 299–306.
  10. Sparrow JR, Miller AS & Zhou J. Blue light-absorbing intraocular lens and retinal pigment epithelium protection in vitro. J Cataract Refract Surg 2004; 30: 873–878.
  11. Davies S, Elliott MH, Floor E et al. Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radic Biol Med 2001; 31: 256–265.
  12. Haigh JD. The sun and the earth's climate. Living Rev Solar Phys. 2007;4:2.
  13. Cuthbertson FM, Peirson SN, Wulff K, Foster RG & Downes SM. Blue light-filtering intraocular lenses: review of potential benefits and side effects. J Cataract Refract Surg 2009; 35: 1281–1297.
  14. Boulton M, Rozanowska M & Rozanowski B. Retinal photo- 240. damage. J Photochem Photobiol B. 2001; 64: 144–61.
  15. Ayaki M, Hattori A, Maruyama Y et al. Protective effect of blue-light shield eyewear for adults against light pollution from self-luminous devices used at night. Chronobiol Int 2016; 33: 134–139.
  16. Young RW. Solar radiation and age-related macular degeneration. Surv Ophthalmol. 1988;32:252e69.
  17. Serm Janjai AW. Standard Operating Procedures for Spectral Instruments Measuring Spectral Solar Ultraviolet Irradiance. Geneva, Switzerland, World Meteorological Organization (WMO); 2014. GAW Report No. 212.
  18. Coddington O, Lean JL, Pilewskie P, et al. A solar irradiance climate data record. Bull Am Meterol Soc. 2016;97:1265e82.
  19. Arnault E, Barrau C, Nanteau C, et al. Phototoxic action spectrum on a retinal pigment epithelium model of age- related macular degeneration exposed to sunlight normalized conditions. PLoS One. 2013;8:e71398.
  20. Bowmaker JK, Dartnall HJ. Visual pigment so frods and cones in a human retina. J Physiol. 1980;298:501e11.
  21. Boettner EA, Wolter JR. Transmission of the ocular media. Invest Ophthalmol Vis Sci. 1962;1:776e83.
  22. Dillon J, Zheng L, Merriam JC, Gaillard ER. Transmission spectra of light to the mammalian retina. Photochem Photobiol. 2000;71:225e9.
  23. Sliney DH. How light reaches the eye and its components. Int J Toxicol. 2002;21:501e9.
  24. Downie LE, Wormald R, Evans J et al. Analysis of a Systematic Review About Blue Light–Filtering Intraocular Lenses for Retinal Protection: Understanding the Limitations of the Evidence. JAMA Ophthalmol. 2019; 137(6):694-697.
  25. Toc Toc Communications. #bluelightexposed. http://www.bluelightexposed.com/. Accessed May 28, 2018.
  26. Smith AK, Conger JR, Hedayati B et al. The effect of a Sccreen Protector on Blue Light Intensity Emitted from Different Hand-held Devices. Middle EastAfr J Ophthalmol. 2020;27(3):177-181.
  27. Moon J, Yun J, Yoon YD et al. Blue light effect on retinal pigment epithelial cells by display devices. Integr Biol (Camb) 2017; 9: 436–443.
  28. O'Hagan JB, Khazova M, Price LL. Low-energy light bulbs, computers, tablets and the blue light hazard. Eye (Lond). 2016;30(2):230–233. doi:10.1038/eye.2015.261 [PubMed: 26768920].
  29. Dillon J, Zheng L, Merriam JC, Gaillard ER. The optical properties of the anterior segment of the eye: implications for cortical cataract. Exp Eye Res. 1999;68:785e95.
  30. Kessel L, Lundeman JH, Herbst K, et al. Age-related changes in the transmission properties of the human lens and their relevance to circadian entrainment. J Cataract Refract Surg. 2010;36:308e12.
  31. Das T, Nirankari MS, Chaddah MR. Solar chorioretinal burn. Am J Ophthalmol. 1956;41:1048e53.
  32. Birch-Hirshlfeld B. Zum kapitel der sonnenblendung des Auges. Zeitschrift fur Augenheilkunde. 1912;28:324e47, 444e449 and 509e530.
  33. Cordes F. A type of foveomacular retinitis observed in the US Navy. Am J Ophthalmol. 1944;27:803e16.
  34. Wergeland FL Jr, Brenner EH. Solar retinopathy and foveomacular retinitis. Ann Ophthalmol. 1975;7:495e8, 501e493.
  35. Glickman RD. Phototoxicity to the retina: mechanisms of damage. Int J Toxicol. 2002;21:473e90.
  36. Glickman RD. Ultraviolet phototoxicity to the retina. Eye Contact Lens. 2011;37:196e205.
  37. Wu J, Seregard S, Algvere PV. Photochemical damage of the retina. Surv Ophthalmol. 2006;51:461e81.
  38. Pocock GM, Oliver JW, Specht CS, et al. High-resolution in vivo imaging of regimes of laser damage to the primate retina. J Ophthalmol. 2014;516854:2014.
  39. Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011; 111(10): 5944-72.
  40. Ham WT Jr. Ocular hazards of light sources: review of current knowledge. J Occup Med. 1983;25:101e3.
  41. Verhoeff FH, Bell L. The pathological effects of radiant energy on the eye. Proc Am Acad Arts Sci. 1916;51:627e818.
  42. Milsom PK, Till SJ, Rowlands G. The effect of ocular aberrations on retinal laser damage thresholds in the human eye. Health Phys. 2006; 91(1):20-8.
  43. Lombardi DA, Pannala R, Sorock GS, et al. Welding related occupational eye injuries: a narrative analysis. Inj Prev. 2005;11:174e9.
  44. Vukicevic M, Heriot W. Phototoxic maculopathy associated with arc welding: clinical findings and associated functional vision impairment. Clin Exp Ophthalmol. 2008;36:695e7.
  45. Magnavita N. Photoretinitis: an underestimated occupational injury? Occup Med (Lond). 2002;52:223e5.
  46. Maier R, Heilig P, Winker R, et al. Welder's maculopathy? Int Arch Occup Environ Health. 2005;78:681e5.
  47. Yeh LK, Yang CS, Lee FL, et al. Solar retinopathy: a case report. Zhonghua Yi Xue Za Zhi (Taipei). 1999;62:886e90.
  48. De Niro JE, Randhawa S, McDonald HR. Retinal vascular tortuosity in DiGeorge syndrome complicated by solar retinopathy. Retin Cases Brief Rep. 2013;7:343e6.
  49. Galainena ML. Solar retinopathy. Ann Ophthalmol. 1976;8:304e6.
  50. Devadason DS, Mahmood S, Stanga PE, Bishop PN. Solar retinopathy in a patient with bipolar affective disorder. Br J Ophthalmol. 2006;90:247.
  51. Horowitz MJ. Flashbacks: recurrent intrusive images after the use of LSD. Am J Psychiatry. 1969;126:565e9.
  52. Chawla R, Mittal K, Venkatesh P, Sharma YR. Solar retinopathy following cannabis consumption. Clin Exp Optom. 2017;100:92e3.
  53. Gilkes MJ. Solar retinopathy. Br Med J. 1968;3:678e9.
  54. Gupta RB, Mehra SK. Solar retinitis. J Indian Med Assoc. 1964;43:268e70.
  55. Irvine WD, Smiddy WE, Nicholson DH. Corneal and iris burns with the laser indirect ophthalmoscope. Am J Ophthalmol. 1990;110:311e3.
  56. Rubinfeld RS, Pilkerton AR Jr, Zimmerman LE. A corneal complication of indirect ophthalmic laser delivery systems. Am J Ophthalmol. 1990;110:206e8.
  57. Cai YS, Xu D, Mo X. Clinical, pathological and photochemical studies of laser injury of the retina. Health Phys. 1989;56:643e6.
  58. Barkana Y, Belkin M. Laser eye injuries. Surv Ophthalmol. 2000;44:459e78.
  59. Alsulaiman SM, Alrushood AA, Almasaud J, et al. High- power handheld blue laser-induced maculopathy: the results of the King Khaled Eye Specialist Hospital Collaborative Retina Study Group. Ophthalmology. 2014;121:566e72.
  60. Kerr LM, Little HL. Foveomacular retinitis. Arch Ophthalmol. 1966;76:498e504.
  61. Rocha Cabrera P, Cordoves Dorta L, Gonzalez Hernandez M. Bilateral solar retinopathy. Autofluorescence and optical coherence tomography. Arch Soc Esp Oftalmol. 2016;91:391e6.
  62. Dhir SP, Gupta A, Jain IS. Eclipse retinopathy. Br J Ophthalmol. 1981;65:42e5.
  63. Leys A, Swinnen T, Hannon L, Van Wing F. Solar retinopathy and foveal cysts. Bull Soc Belge Ophtalmol. 1978;182:74e81.
  64. Tarr KH, Clemett RS. Late features of solar retinopathy. Trans Ophthalmol Soc N Z. 1983;35:26e8.
  65. Cho HJ, Yoo ES, Kim CG, Kim JW. Comparison of spectral-domain and time-domain optical coherence tomography in solar retinopathy. Korean J Ophthalmol. 2011;25:278e81.
  66. De Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous. 2015;1:5.
  67. Arda H, Oner A, Mutlu S, et al. Multifocal electroretinogram for assessing sun damage following the solar eclipse of 29 March 2006: multifocal electroretinography in solar maculopathy. Doc Ophthalmol. 2007;114:159e62.
  68. Birdsong O, Ling J, El-Annan J. Solar retinopathy. Ophthalmology. 2016;123:570.
  69. Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res. 2005;80:595e606.
  70. Brue C, Mariotti C, De Franco E, et al. Solar retinopathy: a multimodal analysis. Case Rep Ophthalmol Med. 2013;2013:906920.
  71. Shukla D. Optical coherence tomography and autofluorescence findings in chronic phototoxic maculopathy secondary to snow-reflected solar radiation. Indian J Ophthalmol. 2015;63:455e7.
  72. Plestina-Borjan I, Klinger-Lasic M. Long-term exposure to solar ultraviolet radiation as a risk factor for age-related macular degeneration. Coll Antropol. 2007;31(Suppl 1):33e8.
  73. Vojnikovic B, Njiric S, Coklo M, Spanjol J. Ultraviolet sun radiation and incidence of age-related macular degeneration on Croatian Island Rab. Coll Antropol. 2007;31(Suppl 1):43e4.
  74. Sui GY, Liu GC, Liu GY, et al. Is sunlight exposure a risk factor for age-related macular degeneration? A systematic review and meta-analysis. Br J Ophthalmol. 2013;97:389e94.
  75. Liou JC, Teng MC, Tsai YS, et al. UV-blocking spectacle lens protects against UV-induced decline of visual performance. Mol Vis. 2015;21:846e56.
  76. Citek K. Anti-reflective coatings reflect ultraviolet radiation. Optometry. 2008;79:143e8.
  77. Kemp CM, Weale RA. Over-exposed film as a protector against solar retinopathies. Lancet. 1982;1:1348e9.
  78. Chou BR. Retinal protection from solar photic injury. Am J Optom Physiol Opt. 1981;58:270e80.
  79. Hunyor AB. Solar retinopathy: its significance for the ageing eye and the younger pseudophakic patient. Aust N Z J Ophthalmol. 1987;15:371e5.
  80. Roh S, Weiter JJ. Light damage to the eye. J Fla Med Assoc. 1994;81:248e51.
  81. Adrian W, Everson RW, Schmidt I. Protection against photic damage in retinitis pigmentosa. Adv Exp Med Biol. 1977;77:233e47.
  82. Fishman GA. Ocular phototoxicity: guidelines for selecting sunglasses. Surv Ophthalmol. 1986;31:119e24.
  83. Li ZY, Tso MOM, Wang HM. Amelioration of photic injury in rat retina by ascorbic acid: A histopathologic study. Invest Ophthalmol Vis Sci. 1985;26:1589e98.
  84. Stoyanovsky DA, Goldman R, Darrow RM. Endogenous ascorbate regenerates vitamin E in the retina directly and in combination with exogenous dihydrolipoic acid. Curr Eye Res. 1995;14:181e9.
  85. Koc RK, Akdemir H, Karakucuk EI, et al. Effect of methylprednisolone, tirilazad mesylate and vitamin E on lipid peroxidation after experimental spinal cord injury. Spinal Cord. 1999;37:29e32.
  86. Schatz H, Mendelblatt F. Solar retinopathy from sun-gazing under the influence of LSD. Br J Ophthalmol. 1973;57:270e3.
  87. Weber P, Kurlemann G, Lunecke C, Tondera A. [Solar retinopathy. Rare cause of acute loss of vision]. Dtsch Med Wochenschr. 1996;121:793e6.
  88. Lin JB, Gerratt BW, Bassi CJ & Apte RS. Short-wavelength light-blocking eyeglasses attenuate symptoms of eye fatigue. Invest Ophthalmol Vis Sci 2017; 58: 442–447.
  89. Benedetto S, Drai-Zerbib V, Pedrotti M, Tissier G & Baccino T. E-readers and visual fatigue. PLoS ONE 2013; 8: e83676.
  90. Rosenfield M. Computer vision syndrome: a review of ocular causes and potential treatments. Ophthalmic Physiol Opt 2011; 31: 502–515.
  91. Gowrisankaran S & Sheedy JE. Computer vision syndrome: a review. Work 2015; 52: 303–314.
  92. Burkhart K & Phelps JR. Amber lenses to block blue light and improve sleep: a randomized trial. Chronobiol Int 2009; 26: 1602–1612.
  93. Leung TW, Li RW & Kee CS. Blue-light filtering spectacle lenses: optical and clinical performances. PLoS ONE 2017; 12: e0169114.
  94. O'Hagan JB, Khazova M & Price LL. Low-energy light bulbs, computers, tablets and the blue light hazard. Eye (Lond) 2016; 30: 230–233.
  95. Downie LE, Busija L, Keller PR. Blue-light filtering intraocular lenses (IOLs) for protecting macular health. Cochrane Database Syst Rev. 2018;5:CD011977. [PubMed: 29786830].
  96. Noell WK, Walker VS, Kang BS, Berman S. Retinal damage by light in rats. Invest Ophthalmol. 1966;5(5):450–473. [PubMed: 5929286].
  97. Davies S, Elliott MH, Floor E, et al. Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radic Biol Med. 2001;31(2):256–265. doi:10.1016/S0891-5849(01)00582-2 [PubMed: 11440838].
  98. Kuse Y, Ogawa K, Tsuruma K, Shimazawa M, Hara H. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Sci Rep. 2014;4:5223. doi:10.1038/srep05223 [PubMed: 24909301].
  99. Mainster MA, Turner PL. Blue-blocking IOLs vs. short-wavelength visible light: hypothesis-based vs. evidence-based medical practice. Ophthalmology. 2011;118(1):1–2. doi:10.1016/j.ophtha. 2010.11.016 [PubMed: 21199710].
  100. Simunovic MP. On seeing yellow: the case for, and against, short- wavelength light-absorbing intraocular lenses. Arch Ophthalmol. 2012;130:919–26.
  101. Alexander I, Cuthbertson FM, Ratnarajan G, Safa R, Mellington FE, Foster RG, et al. Impact of cataract surgery on sleep in patients receiving either ultraviolet-blocking or blue-filtering intraocular lens implants. Investig Ophthalmol Vis Sci. 2014;55:4999–5004.
  102. Zhu XF, Zou HD, Yu YF, Sun Q, Zhao NQ. Comparison of blue light-filtering IOLs and UV light-filtering IOLs for cataract surgery: a meta-analysis. PLoS One. 2012;7(3):e33013.
  103. Nakano S, Miyata A, Kizawa J et al. Blue light-filtering and violet light-filtering hydrophobic acrylic foldable intraocular lenses: Intraindividual comparison. J Cataract Refract Surg. 2019; 45(10): 1393-1397.
  104. Li X, Kelly D, Nolan JM, Dennison JL, Beatty S. The evidence informing the surgeon's selection of intraocular lens on the basis of light transmittance properties. Eye. 2017;31:258–72.
  105. Achiron A, Elbaz U, Hecht I et al. The Effect of Blue-Light Filtering Intraocular Lenses on the Development and Progression of Neovascular Age-Related Macular Degeneration. Ophthalmology. 2021; 128 (3):410-416.
  106. Erichsen JH, Brøndsted AE, Kessel L. Effect of cataract surgery on regulation of circadian rhythms. J Cataract Refractive Surg. 2015;41:1997–2009.
  107. Zheng L, Wu XH, Lin HT. The effect of cataract surgery on sleep quality: a systematic review and Meta-analysis. Int J Ophthalmol. 2017;10:1734–41.
  108. Lee T-M, Loh E-W, Kuo T-C et al. Effects of ultraviolet and blue-light filtering on sleep: a meta-analysis of controlled trials and studies on cataract patients. Eye (Lond). 2020.
  109. Cuthbertson FM, Peirson SN, Wulff K, Foster RG, Downes SM. Blue light-filtering intraocular lenses: review of potential benefits and side effects. J Cataract Refract Surg. 2009;35: 1281–97.
  110. Augustin AJ. Blue light-filtering IOLs-currently available data. Klin Monbl Augenheilkd. 2010;227:617–23.
  111. Van Norren D, van de Kraats J (2007) Spectral transmission of intraocular lenses expressed as a virtual age. Br J Ophthalmol 91: 1374–1375.
  112. Yap M (1984) The effect of a yellow filter on contrast sensitivity. Ophthalmic Physiol Opt 4: 227–232.
  113. Yuan Z, Reinach P, Yuan J (2004) Contrast sensitivity and color vision with a yellow intraocular lens. Am J Ophthalmol 138: 138–140.
  114. House P, Rahman AA, Richards J et al. Long-term clinical audit of glistenings in Alcon Acrysof intraocular lenses with and without yellow chromophore.
  115. Werner L. Glistenings and surface light scattering in intraocular lenses. J Cataract Refract Surg. 2010;36(8):1398-420.
  116. Richards J, House P, McAllister IL et al. Disabling glistenings in multifocal yellow chromophore intraocular lenses. Clin Exp Ophthalmol. 2020; 48(3):408-409.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.